No Indirection:
const char ch; // const character. must be initialized.
char const ch; // same as above
Single-Indirection:
char *p; // p is mutable, *p is mutable
const char *p; // p is mutable, *p is const
char const *p; // same as above.
char *const p; // p is const, *p is mutable, must be initialized.
char const *const p; // p is const, *p is const, must be initialized.
Double Indirection:
char **p; // ptr-to-ptr-to-char
// p, *p, and **p are ALL mutable
const char **p; // ptr-to-ptr-to-const-char
// p and *p are mutable, **p is const
char const **p; // same as above
char *const *p; // ptr-to-const-ptr-to-char
// p is mutable, *p is const, **p is mutable.
char **const p; // const-ptr-to-ptr-to-char
// p is const, *p is mutable, **p is mutable.
// must be initialized.
const char **const p; // const-ptr-to-ptr-to-const-char
// p is const, *p is mutable, **p is const.
// must be initialized.
char const **const p; // same as above
char const *const *p; // ptr-to-const-ptr-to-const-char
// p is mutable, *p is const, **p is const.
const char *const *p; // same as above.
char *const *const p; // const-ptr-to-const-ptr-to-char
// p is const, *p is const, **p is mutable.
// must be initialized.
And of course who can leave home without…
char const *const *const p; // const-ptr-to-const-ptr-to-const-char
// everything is const.
// must be initialized.
const char *const *const p; // same as above
So how does this affect your question? When compiling that code in C, without a cast you’ll get a compiler warning (or error if compiling with -Werror). When compiling in C++, you’ll just plain error because the parameter signature doesn’t match. But why?
Because these have no direct equivalence:
const char **p; // ptr-to-ptr-to-const-char
// p and *p are mutable **p is const
char **p; // ptr-to-ptr-to-char
// p, *p, and **p are all mutable